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ABSTRACT

The standard way in which the sea-ice dynamics equation is used in models assumes that the wind stress and
ocean drag do not depend on the sea-ice concentration. It is demonstrated that this assumption is inconsistent
with the free-drift limit, and how great an effect it has in practice is examined. By examining the momentum
balance in the free-drift limit, the authors determine the proper area scaling for the forcing terms, thereby
obtaining a more accurate solution, particularly in low-ice-concentration regions.

1. The sea-ice momentum equation

The basic equation for sea-ice momentum is often
used in models in the form (e.g., Hibler 1979, herein-
after H79)

0 5 (rheology) 1 t 1 t 2 rHcf k 3 u,a w (1)

where u 5 (u, y) 5 ice velocity, r 5 ice density, H 5
ice thickness averaged over the ice area, f 5 Coriolis
parameter, k 5 vertical unit vector, and c 5 ice con-
centration (i.e., fraction). The wind stress ta and the
ice–ocean stress tw are typically approximated with a
quadratic dependence on wind and ocean current ve-
locities, respectively. Their exact form will not be im-
portant for this paper.

Note that H, ice thickness averaged over ice, is the
quantity directly related to measurements of thickness
(which we are assuming is uniform within the grid cell),
whereas Hc, ice thickness averaged over the grid cell,
is a computational quantity.
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Equation (1) expresses the momentum balance av-
eraged over the model grid cell, and all its terms are in
newtons per meter squared. This form disregards the sea
surface tilt term and assumes the net acceleration is
negligible (Rothrock 1975). For the sake of simplicity,
we consider the case of snow-free ice. We shall be think-
ing of the rheology term as being of the viscous–plastic
or elastic–viscous–plastic (EVP) form, but this assump-
tion will not be important.

2. Statement of the problem

To simplify the equations further, consider the ‘‘free
drift’’ case in which the rheology term is neglected (this
can be achieved formally by setting the ice strength
parameter to zero) and assume all ice has uniform thick-
ness; the remainder of the grid box is open water. Equa-
tion (1) then becomes

0 5 t 1 t 2 rHcf k 3 u.a w (2)

The Coriolis term depends on the ice concentration, but
the forcing terms ta and tw do not. As a consequence,
the solution of (2) depends on c. For clarity, the ap-
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pendix displays the solution of (2) explicitly for the case
of linear drag.

To see that this situation is a problem, consider a
group of ice floes in a region with a given constant ice
thickness H and with a concentration of 10%. This ice
is moving with a velocity u given by the balance of
wind stress, ocean–ice stress, and Coriolis force [(2)],
in a state of free drift. If the ice concentration were only
5% (but the thickness H remained constant) the ice floes
should be drifting with the same velocity. However, (2)
predicts a different velocity because the factor c appears
in the Coriolis term. Because we are considering the
case of free drift, in which ice floes do not interact, this
should not be the case. Thus (1), with component terms
as defined above in the ‘‘usual’’ way, is not consistent
with the free-drift limit, as it should be.

3. Resolution of the problem

By considering the free-drift limit, this problem is
quickly resolved. In free drift, floes do not interact, and
the solution should be the same with or without leads:
thus the most natural form for the free-drift equations
has the wind and water stress, and the mass, averaged
per unit area of sea ice, not per unit area of the grid
cell. To achieve this condition amounts to using the ice
thickness averaged over only the ice area, rather than
the gridbox mean ice thickness, in the Coriolis term.

Equivalently, the forcing terms ta and tw in (1) and
(2) may be multiplied by the ice concentration. In this
case, the equation is interpreted still as averaged over
the gridbox area, but the proportion of the grid box that
is ice free does not contribute to the wind or water stress
terms. In effect, this means (1) has been applied sepa-
rately to the ice-covered and ice-free areas; in the latter,
because the ice thickness is zero, the rheology and Cor-
iolis terms are zero and we simply have ta 1 tw 5 0.

For clarity, we now give the correct form of the equa-
tion and terms, which is

0 5 (rheology) 1 c(t 1 t ) 2 rHcf k 3 u.a w (3)

Equation (3) is the same as (1), but the terms ta and tw

are scaled by a factor of c. For convenience we also
give the corrected equation in the case of free drift:

0 5 c(t 1 t ) 2 rHcf k 3 u.a w (4)

This form lends itself to implementation in coupled ice–
ocean–atmosphere models, in which the atmospheric
stress is split into the stress over leads [(1 2 c)ta], which
is passed straight into the ocean, and the stress over the
ice (cta), which goes through the sea-ice model. In a
similar way, the ice–ocean stress that is passed from the
ice model into the ocean is only applicable over the area
covered by ice.

In the case we have been considering of thick ice in
free drift, the correct formulation for the ice mass is
simple to see. The situation becomes less obvious when
we consider multicategory ice. When the modeled sea

ice is considered to consist of just two categories, ‘‘thick
ice’’ and ‘‘thin ice,’’ rather than ‘‘thick ice’’ and ‘‘open
water,’’ the thin ice is still generally assumed to have
no strength, and so it must experience zero net stress
(ta 1 tw 5 0) and the situation is unaltered. Floes of
different nonzero thickness in free drift should have
different velocities, however; a multicategory free-drift
code could solve the momentum balance (3) separately
for each thickness. In practice, however, multicategory
ice is only considered when rheology is also taken into
account.

When the rheology term is included, it is necessary
to use the area-averaged form of the momentum balance,
because the rheology term intrinsically depends on a
continuum viewpoint with no distinction between ice
and leads. A single velocity is used for all thickness
categories because there is a single strain-rate tensor for
the ice continuum. This approach is obviously an ap-
proximation, but it seems unavoidable with current for-
mulations of rheology. We maintain that in the multi-
category case, (3) is still correct, because the ice-free
area (or ‘‘thin ice’’) has no strength and hence does not
affect the rheology term in (3).

Our approach is equivalent to applying the wind stress
over the leads to the ocean momentum budget, decou-
pling the water in the leads from the ice momentum
budget. In reality, it is likely that there is substantial
lateral drag on the ice floes, tending to make the ice and
the water within the leads move with similar velocities
(Gray and Morland 1994). This fact could be an argument
for including the leads in the momentum budget with ta

and tw not multiplied by c. However, in that case the
appropriate mass in (1) is not the ice mass, but the mass
of the combined slab of ice and water, assumed to move
as a rigid body, with mass per unit area rH because, by
isostasy, the water in the leads from the base of the floe
to the surface has the same mass per unit area as the sea
ice. Hence the combined momentum balance (in the free-
drift case) takes the form

0 5 (t 1 t ) 2 rHf k 3 u.a w (5)

In multiplying through by c, (5) is converted to (4), and
so our velocity solution is unchanged. The solution giv-
en by (2) for this case is still different, though, because
it neglects the mass of the water in the leads. This dis-
cussion of the wind stress over the leads is also a sim-
plification for many reasons: for instance, the ocean drag
on the leads water will not have the same form as on
the ice, and it is only the areas of leads reasonably near
to ice floes that will be dragged along with them. As
with the multicategory ice, the use of a single momen-
tum equation for a continuum with a single velocity is
of course the basic inadequacy.

The problem regarding the treatment of stresses ap-
pears to originate in the paper of H79 and follows
through to many, but not all, papers following this work
(e.g., Hunke and Dukowicz 1997). It also appears in
some papers (e.g., Overland and Pease 1988) that do
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FIG. 1. Arctic ice area fraction and velocity (m s21) for Jan, year 30, from the POP/
CICE model. (a) Control: light (dark) shading indicates ice area of 0–85% (85%–
100%). (b) Test 2 control: shading indicates area difference (light, negative; dark,
positive). Note the change in scale arrow between (a) and (b).
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not explicitly follow H79, however. In these cases, ta

and tw were recognized as approximate, cell-average
quantities, without the realization that an improved ap-
proximation, consistent in the free-drift limit, results
from applying ta 1 tw 5 0 over the open-water area.
In most other cases, it is unclear from papers whether
the problem is present, because the ice thickness h is
often quoted as the ‘‘average ice thickness’’ and the
crucial distinction between ‘‘average over the grid box
area’’ and ‘‘average over the ice area’’ cannot be clearly
made. A few papers (e.g., Hakkinen 1987; Haapala
2000) can be seen to be correct. Only one paper of which
we are aware (Gray and Morland 1994, p. 267) shows
awareness of the problem; however, the analysis is bur-
ied deeply within the paper and has not been picked up
by the community.

4. Practical effects

The correction proposed here amounts to multiplying
the drag terms of the ice momentum equation by the
ice concentration. In practice, the ice concentration is
often 90% or higher within the pack, and thus for large
areas the change to the equations would be small.

We perform two anomaly integrations to test this (the
control integration uses the corrected form of the equa-
tions; the anomaly uses the uncorrected form). The first
uses a coupled atmosphere–ocean–ice GCM [Hadley
Centre Coupled Model (HadCM3; Gordon et al. 2000)
with EVP sea-ice dynamics]. This approach has the dis-
advantage of nonrepeatability: stochastic interannual
variation within the coupled system means that the dif-
ference between individual years may be due to this
variation rather than a reflection of the change in the
equations. To minimize this effect, we use an average
of 5 yr. However, it has the benefit of allowing atmo-
spheric feedback, to test the possibility that relatively
small change could lead by feedback to larger effects.
The results from this run are not shown. Changes are
small and cannot be distinguished from interannual var-
iability.

The second test uses an ocean–ice GCM with imposed
atmospheric forcing [Parallel Ocean Program/Los Al-
amos Sea Ice Model (POP/CICE); Hunke and Lipscomb
2001; Smith and Gent 2002]. This setup has the benefit
that differences between control and anomaly at year
30 represent the results of the change in the equations
alone; there is no atmospheric feedback.

The results from the POP/CICE test are shown in Fig.
1, for January of year 30. Differences in the ice area
are minor except near the ice edge, where the concen-
tration is less than about 90%; the magnitude of the
differences lies between 21% and 1% nearly every-
where. The biggest difference for ice velocity appears
to be direction. Reduced wind stress would make the
ice drift more slowly, but reduced ocean drag compen-
sates for that somewhat; the Coriolis term in the test
run is more important relative to the wind and ocean

stresses than in the control run, resulting in turning of
the velocity vectors.

5. Conclusions

To make the sea-ice dynamics equation consistent
with the free-drift limit, the wind stress and ocean drag
terms should be multiplied by the sea-ice concentration.
This correction to a model is small and easily imple-
mented. The effects in practice are not large, but it is
preferable to use a model that treats the low-concentra-
tion limit of free drift correctly as well as the high-
concentration situations in which the rheology comes
into play and the correction is relatively less important.
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APPENDIX

The Solution of (2) in the Case of Linear Drag

If we assume for simplicity that uw is zero, and we
assume a linear drag form for tw, that is,

t 5 2du,w

with d a constant, then (2) becomes

0 5 t 2 du 2 rHcf k 3 u,a

which can be rearranged as

du 1 rHcf k 3 u 5 t .a

Hence, taking the cross product with rHcf k,

2 2u 5 (d 2 rHcf k 3)t /[d 1 (rHcf ) ].a (A1)

Since k 3 ta is perpendicular to ta,

2 2 1/2| u | 5 | t | /[d 1 (rHcf ) ] ,a (A2)

and the opening angle clockwise from ta to u is

atan[2(rHcf )/d]. (A3)

Equations (A1)–(A3) are seen to depend on c, which
they should not. Because our correction multiplies both
ta and d by c but does not change (rHcf ), it is clear
that both the magnitude of u and the opening angle are
affected by our correction: | u | is decreased and the
opening angle is increased. Equations (A1)–(A3) are the
solution for the incorrect form (2); the solution corre-
sponding to (A3) for the corrected (4) multiplies both
ta and d by c and hence is

2 2 1/2u 5 (d 2 rHf k 3)t /[d 1 (rHf ) ] .a
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This solution (correctly) does not depend on the ice
concentration c.
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